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Adversarial Machine Learning
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Out-of-Distribution Detection

π(y |x ,D)⇒ H(Y ) = −
∫

π(y |x ,D) log π(y |x ,D)dy
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Our Goal

Key Question

Are Bayesian predictive models really more robust to adversarial attacks?

Adversarial Machine Learning:

Modify (minimally) the input of the model to achieve some specific goal.

Research Gap

Most AML research focuses on frequentist models and point predictions.
Vulnerabilities of Bayesian models and their uncertainty estimates remain
largely unexplored.
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Problem Setup

Predictor: Bayesian model with posterior predictive distribution (PPD)

π(y |x ,D) =

∫
π(y |fβ(x), ϕ)π(γ|D)dγ , γ ≡ (β, ϕ)

Attacker: Seeks to manipulate inputs x → x ′ to achieve some objective.

Two Attack Types

1. Point Attacks: Target specific predictions (mean, quantiles, utilities,...)

min
x′∈X

∥E[g(x ′, y)]− G∗∥2

2. Distribution Attacks: Reshape the entire PPD

min
x′∈X

KL(πA(y)∥π(y |x ′,D))
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Type 2: Targeting Full Distribution

Objective: Steer PPD towards adversarial distribution πA(y)

min
x′∈X

KL(πA(y)∥π(y |x ′,D))

Proposition (2)

Under some regularity conditions, the gradient can be expressed as:

∇x′KL = −Ey

[
Eγ|D [∇x′π(y |x ′, γ)]
Eγ|D [π(y |x ′, γ)]

]

Challenge: Gradient involves ratio of expectations.

Solution: Multi-level Monte Carlo for unbiased estimation.
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Gradient Estimation for PPD Attacks
Define

gx′,M(y) ≡ −
1
M

∑M
m=1∇x′π(y |x ′, γm)

1
M

∑M
m=1 π(y |x ′, γm)

.

We have:

∇x′KL =
∞∑
ℓ=0

E[gx′,Mℓ
(y)− gx′,Mℓ−1

(y)],

where we take gx′,M−1(y) ≡ 0.

Unbiased MLMC gradient estimator

Sample ℓ(1), . . . , ℓ(R) with probabilities ωℓ ∝ 2−τℓ, and estimate:

∇̂x′KL =
1

R

R∑
r=1

gx′,M
ℓ(r)

(y)− gx′,M
ℓ(r)−1

(y)

ωℓ(r)

Practical Implementation: ∆gx′,ℓ(y) computed using antithetic coupling to
reduce variance.
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Algorithm (simplified): PPD Attacks

1: Input: x , πA(y), π(γ|D), X , η, steps T , samples R, sequence {Mℓ} and
weights {ωℓ}

2: for t = 1 to T do

3: Sample y ∼ πA(y) and R levels ℓ(r) ∼ ωℓ

4: Compute ∆gx′,ℓ(r)(y) for each r

5: Estimate gradient: ∇̂x′J(x ′) = 1
R

∑ ∆g
ω

ℓ(r)

6: Update x ′ ← ProjX

(
x ′ − η∇̂x′J(x ′)

)
7: end for

8: Return: x ′
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Experimental Results: Regression
With ∥x ′ − x∥2 ≤ 0.5

• Dataset: Wine quality. 11 features

PPD attack
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Experimental Results: Classification

1) Unattacked x 2) x ′ : ∥x ′ − x∥2 ≤ 0.5 3) 10 · |x ′ − x |
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Experimental Results: Classification

1) Unattacked 2) Attack with ∥x ′ − x∥2 ≤ 0.5
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Experimental Results: Classification
With ∥x ′ − x∥2 ≤ 0.5

• Dataset: 50% of samples from MNIST and 50% from notMNIST
• Setup: Keep the % with lowest predictive entropy

Selective accuracy
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Key Takeaways

Contributions
• Novel Attack Framework to attack Bayesian predictive models

• Can be applied to any inference paradigm that allows sampling

• Evidence across white-box and gray-box settings

Bayesian models are NOT inherently robust
• Uncertainty estimates can be manipulated with small perturbations

• Both point predictions and full distributions are vulnerable

• Attacks transfer across models and limited information settings

• Critical need for robust Bayesian inference methods

Need for Security-by-Design

Partial solutions are insufficient. We need fundamental advances in robust
Bayesian inference.
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In the paper

More results on:

• Toy dataset with analytical solution

• Point attack derivation and experiments

• Regression tasks

• Transferability of attacks

• MCMC and VI based inference

Questions?

pablo.garcia@icmat.es
https://pablogarciarce.github.io
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Gray-Box Attack Transferability
Limited information scenarios (Avoiding game-theoretic CK assumptions):
1. Unknown architecture: Different BNN arch
2. Limited training data: 1/3 of training dataset
3. Partial features: 7 best/worst predictive features (out of 11)

(a) Point attacks. (b) Attacks to full PPD.

Figure: Security evaluation plot (SEP) of attacks.

Implication: Attacks remain effective even with partial information.
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Backup: Mathematical Details

Proposition (2)

Under some regularity conditions, the gradient can be expressed as:

∇x′KL = −Ey

[
Eγ|D [∇x′π(y |x ′, γ)]
Eγ|D [π(y |x ′, γ)]

]
Regularity Conditions for Proposition 2:

1. y 7→ log π(y | x ′,D)πA(y) is integrable for each x ′

2. x ′ 7→ log π(y | x ′,D) is differentiable for almost every y

3. There exists an integrable H(y) with ∥∇x′ log π(y | x ′,D)∥ ≤ H(y) for
all x ′

4. The map γ 7→ π(y | x ′, γ)π(γ | D) is integrable for each x ′, with
∇x′π(y | x ′, γ) dominated by an integrable function

18 18


	Introduction & Motivation
	Implications & Future Work

