Evasion Attacks Against Bayesian Predictive Models

Targeting Posterior Predictive Distributions and Uncertainty

Pablo G. Arce^{1,2} Roi Naveiro³ David Ríos Insua¹

¹Institute of Mathematical Sciences, Spanish National Research Council

²Universidad Autónoma de Madrid

³CUNEF Universidad

July 24, 2025

Adversarial Machine Learning

Out of Distribution

Out of Distribution

Out-of-Distribution Detection

$$\pi(y|x,D) \Rightarrow \mathbb{H}(Y) = -\int \pi(y|x,D) \log \pi(y|x,D) dy$$

Our Goal

Key Question

Are Bayesian predictive models really more robust to adversarial attacks?

Adversarial Machine Learning:

Modify (minimally) the input of the model to achieve some specific goal.

Our Goal

Key Question

Are Bayesian predictive models really more robust to adversarial attacks?

Adversarial Machine Learning:

Modify (minimally) the input of the model to achieve some specific goal.

Research Gap

Most AML research focuses on **frequentist models** and **point predictions**. Vulnerabilities of **Bayesian models** and their **uncertainty estimates** remain largely unexplored.

Problem Setup

Predictor: Bayesian model with posterior predictive distribution (PPD)

$$\pi(y|x,D) = \int \pi(y|f_{eta}(x),\phi)\pi(\gamma|D)d\gamma\;, \quad \gamma \equiv (eta,\phi)$$

Attacker: Seeks to manipulate inputs $x \to x'$ to achieve some objective.

Two Attack Types

1. Point Attacks: Target specific predictions (mean, quantiles, utilities,...)

$$\min_{x'\in\mathcal{X}}\|\mathbb{E}[g(x',y)]-G^*\|_2$$

2. Distribution Attacks: Reshape the entire PPD

$$\min_{x' \in \mathcal{X}} \mathsf{KL}(\pi_{\mathcal{A}}(y) || \pi(y|x', D))$$

Type 2: Targeting Full Distribution

Objective: Steer PPD towards adversarial distribution $\pi_A(y)$

$$\min_{x' \in \mathcal{X}} \mathsf{KL}(\pi_{A}(y) \| \pi(y|x', D))$$

Proposition (2)

Under some regularity conditions, the gradient can be expressed as:

$$\nabla_{x'} KL = -E_y \left[\frac{E_{\gamma|D} [\nabla_{x'} \pi(y|x',\gamma)]}{E_{\gamma|D} [\pi(y|x',\gamma)]} \right]$$

Challenge: Gradient involves ratio of expectations.

Solution: Multi-level Monte Carlo for unbiased estimation.

Gradient Estimation for PPD Attacks

Define

$$g_{x',M}(y) \equiv -\frac{\frac{1}{M} \sum_{m=1}^{M} \nabla_{x'} \pi(y|x', \gamma_m)}{\frac{1}{M} \sum_{m=1}^{M} \pi(y|x', \gamma_m)}.$$

We have:

$$abla_{x'}\mathsf{KL} = \sum_{\ell=0}^{\infty} \mathbb{E}[g_{x',M_\ell}(y) - g_{x',M_{\ell-1}}(y)],$$

where we take $g_{x',M-1}(y) \equiv 0$.

Unbiased MLMC gradient estimator

Sample $\ell^{(1)}, \dots, \ell^{(R)}$ with probabilities $\omega_{\ell} \propto 2^{-\tau \ell}$, and estimate:

$$\hat{\nabla}_{x'}\mathsf{KL} = \frac{1}{R} \sum_{r=1}^{R} \frac{g_{x',M_{\ell(r)}}(y) - g_{x',M_{\ell(r)-1}}(y)}{\omega_{\ell^{(r)}}}$$

Practical Implementation: $\Delta g_{x',\ell}(y)$ computed using antithetic coupling to reduce variance.

Algorithm (simplified): PPD Attacks

- 1: **Input:** x, $\pi_A(y)$, $\pi(\gamma|\mathcal{D})$, \mathcal{X} , η , steps T, samples R, sequence $\{M_\ell\}$ and weights $\{\omega_\ell\}$
- 2: for t = 1 to T do
- 3: Sample $y \sim \pi_A(y)$ and R levels $\ell^{(r)} \sim \omega_\ell$
- 4: Compute $\Delta g_{x',\ell(r)}(y)$ for each r
- 5: Estimate gradient: $\widehat{\nabla}_{x'}J(x')=\frac{1}{R}\sum \frac{\Delta g}{\omega_{\varrho(r)}}$
- 6: Update $x' \leftarrow \operatorname{Proj}_{\mathcal{X}} \left(x' \eta \widehat{\nabla}_{x'} J(x') \right)$
- 7: end for
- 8: **Return:** *x'*

Experimental Results: Regression

With $||x' - x||_2 \le 0.5$

• Dataset: Wine quality. 11 features

1) Unattacked x

1) Unattacked x

1) Unattacked x

1) Unattacked

2) Attack with $||x' - x||_2 \le 0.5$

With $||x' - x||_2 \le 0.5$

- Dataset: 50% of samples from MNIST and 50% from notMNIST
- Setup: Keep the % with lowest predictive entropy

Key Takeaways

Contributions

- Novel Attack Framework to attack Bayesian predictive models
- Can be applied to any inference paradigm that allows sampling
- Evidence across white-box and gray-box settings

Key Takeaways

Contributions

- Novel Attack Framework to attack Bayesian predictive models
- Can be applied to any inference paradigm that allows sampling
- Evidence across white-box and gray-box settings

Bayesian models are NOT inherently robust

- Uncertainty estimates can be manipulated with small perturbations
- Both point predictions and full distributions are vulnerable
- Attacks transfer across models and limited information settings
- Critical need for robust Bayesian inference methods

Need for Security-by-Design

Partial solutions are insufficient. We need fundamental advances in robust Bayesian inference.

In the paper

More results on:

- Toy dataset with analytical solution
- Point attack derivation and experiments
- Regression tasks
- Transferability of attacks
- MCMC and VI based inference

Questions?

pablo.garcia@icmat.es
https://pablogarciarce.github.io

Gray-Box Attack Transferability

Limited information scenarios (Avoiding game-theoretic CK assumptions):

- 1. Unknown architecture: Different BNN arch
- 2. **Limited training data**: 1/3 of training dataset
- 3. Partial features: 7 best/worst predictive features (out of 11)

(b) Attacks to full PPD

Figure: Security evaluation plot (SEP) of attacks.

Implication: Attacks remain effective even with partial information.

Backup: Mathematical Details

Proposition (2)

Under some regularity conditions, the gradient can be expressed as:

$$\nabla_{x'} KL = -E_y \left[\frac{E_{\gamma|D} [\nabla_{x'} \pi(y|x',\gamma)]}{E_{\gamma|D} [\pi(y|x',\gamma)]} \right]$$

Regularity Conditions for Proposition 2:

- 1. $y \mapsto \log \pi(y \mid x', D) \pi_A(y)$ is integrable for each x'
- 2. $x' \mapsto \log \pi(y \mid x', D)$ is differentiable for almost every y
- 3. There exists an integrable H(y) with $\|\nabla_{x'} \log \pi(y \mid x', D)\| \le H(y)$ for all x'
- 4. The map $\gamma \mapsto \pi(y \mid x', \gamma) \pi(\gamma \mid D)$ is integrable for each x', with $\nabla_{x'} \pi(y \mid x', \gamma)$ dominated by an integrable function